Sequential Importance Sampling for Bipartite Graphs With Applications to Likelihood-Based Inference

نویسندگان

  • Ryan Admiraal
  • Mark S. Handcock
چکیده

The ability to simulate graphs with given properties is important for the analysis of social networks. Sequential importance sampling has been shown to be particularly effective in estimating the number of graphs adhering to fixed marginals and in estimating the null distribution of test statistics. This paper builds on the work of Chen et al. (2005), providing an intuitive explanation of the sequential importance sampling algorithm as well as several examples to illustrate how the algorithm can be implemented for bipartite graphs. We examine the performance of sequential importance sampling for likelihood-based inference in comparison with Markov chain Monte Carlo, and find little empirical evidence to suggest that sequential importance sampling outperforms Markov chain Monte Carlo, even for sparse graphs or graphs with skewed marginals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resampling: An improvement of importance sampling in varying population size models.

Sequential importance sampling algorithms have been defined to estimate likelihoods in models of ancestral population processes. However, these algorithms are based on features of the models with constant population size, and become inefficient when the population size varies in time, making likelihood-based inferences difficult in many demographic situations. In this work, we modify a previous...

متن کامل

Efficient Sampling for Bipartite Matching Problems

Bipartite matching problems characterize many situations, ranging from ranking in information retrieval to correspondence in vision. Exact inference in realworld applications of these problems is intractable, making efficient approximation methods essential for learning and inference. In this paper we propose a novel sequential matching sampler based on a generalization of the PlackettLuce mode...

متن کامل

Likelihood analysis of population genetic data under coalescent models: computational and inferential aspects

2 Lihelihood inference using importance sampling algorithms 3 2.1 Inferring the likelihood for a parameter point by importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Sequential importance sampling formulation . . . . . . 3 2.1.2 Optimal p and w . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Formulation of efficient p and w . . . . . . . . . . . ....

متن کامل

Maximum Likelihood Estimation for Stochastic Differential Equations Using Sequential Gaussian-Process-Based Optimization

Stochastic Differential Equations (SDEs) are used as statistical models in many disciplines. However, intractable likelihood functions for SDEs make inference challenging, and we need to resort to simulation-based techniques to estimate and maximize the likelihood function. While importance sampling methods have allowed for the accurate evaluation of likelihoods at fixed parameter values, there...

متن کامل

networksis: A Package to Simulate Bipartite Graphs with Fixed Marginals Through Sequential Importance Sampling.

The ability to simulate graphs with given properties is important for the analysis of social networks. Sequential importance sampling has been shown to be particularly effective in estimating the number of graphs adhering to fixed marginals and in estimating the null distribution of graph statistics. This paper describes the networksis package for R and how its simulate and simulate_sis functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006